Originally Published here:

By Doris Dahl & Justin Pence.  Published on November 28, 2017

The disaster at the Fukushima Daiichi Power Plant in Japan and the catastrophic Macondo oil spill in the Gulf of Mexico are bitter reminders of the critical need to create innovative scientific solutions for risk management, risk-informed decision making, and regulation. Zahra Mohaghegh, an assistant professor of nuclear, plasma, and radiological engineering (NPRE) and a member of the Organizational Intelligence and Computational Social Science Group, is helping position Illinois to become a global leader in socio-technical risk analysis.

Mohaghegh’s goal is clear. “At Illinois, we want to develop the research and educational infrastructure that will help solve the most challenging risk and safety issues of industries,” Mohaghegh said. To meet this goal, she is advancing probabilistic risk assessment (PRA).

PRA is the leading methodology for estimating the systematic risk for high-consequence industries and is a constantly changing technology that can meet the demands and challenges of complex socio-technical systems and processes. “Next-generation leaders must begin to think differently, using risk-informed solutions to initiate safe, resilient, sustainable, and socially responsible technological advancements to usher in an era void of technological accidents,” Mohaghegh said.

Since its inception at the Massachusetts Institute of Technology, PRA is now one of the key pillars of the risk-informed regulatory framework for the Nuclear Regulatory Commission. Other government agencies, including the Department of Energy (DOE), the Federal Aviation Administration, the National Aeronautics and Space Administration, the Department of Defense, the Environmental Protection Agency, the Food and Drug Administration, and the Department of Transportation, also have begun to adopt PRA for decision making and policy setting.

A concurrent trend is the expansion of PRA research and educational programs at an increasing number of universities in the U.S. and abroad.

After completing her postdoctoral research appointment in 2011 at the Center for Risk and Reliability at the University of Maryland, Mohaghegh created a risk management consulting company in Boston. She made the move to academia in 2013 to fulfill her desire to teach and to interact with students through research.

“Although building a new area has its challenges, the criticality of the topic in high-consequence industries and the societal benefits of its applications will enable Illinois students with highly competitive skillsets to fill the growing demand for risk analysts,” Mohaghegh said. “I believe that the collaborative research environment of  Illinois will give me the opportunity to make this university a global leader in socio-technical risk analysis.”

She has diligently worked toward this goal—establishing the Socio-Technical Risk Analysis (SoTeRiA) Laboratory, where a multidisciplinary team of students, researchers, and industry professionals are advancing PRA with scientific innovations in two key areas: spatio-temporal causal modeling of social and physical failure mechanisms in PRA, and the fusion of big data analytics with PRA.

When Mohaghegh joined the NPRE faculty, she transferred a large-scale industry research project sponsored by the South Texas Project Nuclear Operating Company to Illinois. During the last four years, Mohaghegh and her graduate students have been developing an integrated risk methodology for the resolution of a 20-year longstanding safety issue in the nuclear industry, the Generic Safety Issue 191, which is related to the performance of the emergency core cooling system following a loss of coolant accident.

Mohaghegh became affiliated with the Beckman Institute in 2014, and the collaborative environment has helped her further her research in the field. As a Beckman faculty member, Mohaghegh has initiated collaborations with other Beckman groups, proposing new areas of discovery on the topics such as fire PRA, risk-informed emergency response, health care risk analysis, and monetary value of risk analysis, which assists companies and organizations to make decisions that not only promote safety but also helps their profitability.

In 2015, Mohaghegh became the principal investigator (PI) of a five-year National Science Foundation (NSF) grant to quantify organizational factors using big data analytics in PRA, and in 2017, she became the PI for a three-year DOE grant for enterprise risk management to promote the sustainability of the U.S. nuclear fleet.

With recent support from the College of Engineering, Mohaghegh is establishing the SoTeRiA Industry Affiliates Program (IAP), the first program in academia that works with industry for risk analysis and offers the latest research methods for real-time risk detection, monitoring, mitigation, and risk management with big data applications, while providing risk-analysis training. The SoTeRiA Laboratory has initiated collaborations with national and international research institutions and plans to expand risk analysis collaborations through the program to develop tailor-made solutions for high-risk operations around the world. Industry members will work with the SoTeRiA IAP team to build specialized tools for solving their most challenging problems, while developing training series that fit their business needs.

“Risk analysis will be advanced by creative, scientific, and multidisciplinary students who have the interest and support to explore and study courses among diverse engineering and non-engineering departments,” Mohaghegh said. “The Beckman Institute embodies this model and it is through this style that a university can enable the nonlinear cross-
disciplinary thinking needed to analyze the risks emerging at the interface of social and technical systems.”




Tatsuya Sakurahara Receives Illinois Student Government’s Teaching Excellence Award

Congratulations to our very own Tatsuya Sakurahara for being an Excellent Teaching Assistant in the Field of PRA. See the Full Article HERE.

Sakurahara has been recognized for his dedication as a teaching assistant in two NPRE courses on Probabilistic Risk Assessment (PRA), NPRE 461 (Probabilistic Risk Assessment) and NPRE 498/598 (Advanced Risk Analysis), which Mohaghegh instructs. The ISG awards five Teaching Excellence Awards each year to recognize excellence in teaching and to show appreciation for outstanding University of Illinois instructors.

Tatsuya is an integral part of our laboratory, and we are so proud to see him recognized for his teaching excellence.

See the Full Article HERE.

Postdoctoral Fellowship Opportunity in SoTeRiA Laboratory


The SoTeRiA Laboratory is looking or a Postdoctoral researcher to apply through the Beckman Institute Postdoctoral Fellows or Beckman-Brown Interdisciplinary Postdoctoral Fellows programs.

The Beckman Institute Postdoctoral Fellows and Beckman-Brown Interdisciplinary Postdoctoral Fellows programs are intended for recent Ph.D.s or students in their final year of doctoral study with research interests relevant to the Beckman Institute. A competition is held yearly and four to six Beckman Institute Postdoctoral Fellows and one Beckman-Brown Interdisciplinary Postdoctoral Fellow are selected. The terms are up to three years.


Please contact SoTeRiA Laboratory by emailing for guidance in preparation of your application.

Once discussing with the SoTeRiA Laboratory, visit the Beckman Website to fill out the application, which includes CV, research plan, research justification, letters of reference, etc. Applications for the Year 2017 Beckman Postdoctoral Fellows Program are now being accepted until midnight Central Time on Monday, November 28, 2016.



Assistant Prof. Zahra Mohaghegh is the 2016 winner of the American Nuclear Society Mary Jane Oestmann Professional Women’s Achievement Award. The Oestmann award of the 11,000-member ANS recognizes outstanding personal dedication and technical achievement by a woman in the fields of nuclear science, engineering, research or education.

Mohaghegh team receives NSF grant to use big data analytics in new-generation probabilistic risk assessment


“NPRE Assistant Prof. Zahra Mohaghegh is the Principal Investigator on a five-year National Science Foundation (NSF) project that integrates big data analytics into Probabilistic Risk Assessment (PRA).

Entitled “A Big Data-Theoretic Approach to Quantify Organizational Failure Mechanisms in Probabilistic Risk Assessment,” the $899,000 project is funded by two NSF programs: Science of Organizations (SoO) and Big Data Science and Engineering (BIGDATA).

“Catastrophic events such as Fukushima have made it clear that the capability of integrating physical and social causes of failure into a socio-technical modeling framework is the future of risk analysis,” said Mohaghegh. The NSF research aims to quantify this framework for the risk analysis of nuclear power plants. The methodology is also applicable for other high-risk industries, including aviation, healthcare, oil and gas.

Mohaghegh, an expert in PRA, is teaming up with specialists in Organizational Behavior (Co-PI Prof. Cheri Ostroff; University of South Australia) and Information Science (Co-PI Associate Prof. Catherine Blake; University of Illinois at Urbana-Champaign) to advance predictive causal modeling and big-data theoretic technologies for PRA. Current organizational risk contributors lack reliable data analytics, according to Justin Pence, an informatics PhD student and member of Mohaghegh’s group in the Socio-Technical Risk Analysis (SoTeRiA) Laboratory. These researchers are expanding the classical approach of data management for risk analysis by using big data analytic techniques and simulation to uncover organizational contributors to system risk.

This research will advance the Big Data-Theoretic Algorithm; a methodology for extracting and interpreting socio-technical information from unstructured textual communications. The PI’s research group has developed the Big Data-Theoretic Algorithm and initiated its application in the nuclear power industry to perform text mining on Corrective Action Program documents. In addition to unstructured data, this research deals with large volume of data to perform uncertainty analysis on large-scale risk frameworks. Mohaghegh is an investor in the Illinois Campus Cluster Program (ICCP), allowing her to use ICCP resources in risk research projects.

A member of the NPRE faculty for the past two years, Mohaghegh has pioneered research in the systematic causal modeling of physical and social failure mechanisms by incorporating Big Data Analytics and spatio-temporal dimensions into PRA. PRA is one of the key pillars of the Risk-Informed regulatory framework for the Nuclear Regulatory Commission (NRC). A growing number of other U.S. government agencies – the Department of Energy (DOE), the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA) – also have begun to use PRA for policy setting and decision-making.

Dean’s Award for Excellence in Research
Mohaghegh was honored in Spring 2015 with the College of Engineering at Illinois Dean’s Award for Excellence in Research for her innovative and scientific contributions to risk analysis. She views the award as a result of state-of-the-art research emanating from the SoTeRiA team.

Since coming to Illinois, Mohaghegh and her group have been involved in a large-scale academia-industry project, sponsored by the South Texas Project Nuclear Operating Company. The work has contributed to developing an integrated risk methodology for the resolution of the nuclear industry’s 20-year-long and very challenging Generic Safety Issue 191 (GSI-191).

Examples of the lab’s current research projects include:

  • Fire PRA in nuclear power plants;
  • Location-specific Loss of Coolant Accidents (LOCA) leading to Emergency Core Cooling System failure;
  • Modeling the effects of human and organizational factors on nuclear power plant technical system failure;
  • Socio-technical risk-informed emergency preparedness, planning and response modeling for severe accidents;
  • Evaluating PRA’s monetary value.

International Impact
The SoTeRiA Laboratory aims to establish the University of Illinois as a global leader in Risk Analysis education and research. In March 2015, Mohaghegh’s group developed and presented the U.S.-China Probabilistic Safety Assessment Workshop on “Risk-Informed Regulation and Safety Culture,” in Shenzhen, China, as part of the DOE’s Peaceful Uses of Nuclear Technology (PUNT) program.

The SoTeRiA team coordinated and taught a one-week training workshop on risk-informed regulation and safety culture for the Chinese nuclear power industry. Seventy-two representatives from 28 Chinese nuclear energy organizations and entities attended, including plant managers, operators, engineers, and researchers. NPRE research affiliate Ernie Kee and Ph.D. candidate Tatsuya Sakurahara joined Mohaghegh and Pence in leading the workshop, in collaboration with U.S. regulatory experts Glenn Kelly (retired from the Nuclear Regulatory Commission) and Weidong He from AdSTM, LLC.

With 10 years experience in PRA research, Mohaghegh believes that “while the U.S. leads in risk analysis methods for nuclear safety, PRA researchers applying analysis techniques in countries such as China and Japan must take into account varying geographies, cultures and operating experiences to avoid potentially misleading results.” Mohaghegh and her team have initiated collaborations with national and international research institutions in order to achieve tailor-made solutions for high-risk operations around the world.

Impact at the University of Illinois
At the University of Illinois, Mohaghegh and her SoTeRiA team are presenting foundational undergraduate and graduate risk analysis courses to train the next generation for risk analysis in high-consequence industries. In addition to students from NPRE, the courses have attracted students from multiple departments including Civil and Environmental Engineering, Mechanical Science and Engineering, Aerospace Engineering, Industrial Systems and Enterprise Engineering, and Informatics. Risk Analysis courses address fundamental theories of risk-scenario modeling and accident phenomenology, uncertainty analysis, Bayesian and data analysis, probabilistic physics of failure, human error modeling, and next generation PRA methods and tools. Students are provided with hands-on opportunities using PRA software to address real-world risk analysis problems.

The momentum of Mohaghegh and her SoTeRiA research team is influenced by a shared vision to usher in a new era, void of catastrophic technological accidents, where industry-academia projects are leveraged to raise social responsibility for the protection of workers, the public, and the environment.”